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A framework is outlined for a unified approach to forecasting the implications of climate change on production of marine fish. The
framework involves five steps: (i) identification of mechanisms underlying the reproductive success, growth, and distribution of major
fish and shellfish populations, (ii) assessment of the feasibility of downscaling implications of climate scenarios derived from
Intergovernmental Panel on Climate Change (IPCC) models for regional ecosystems to select and estimate relevant environmental
variables, (iii) evaluation of climate model scenarios and select IPCC models that appear to provide valid representations of
forcing for the region of study, (iv) extraction of environmental variables from climate scenarios and incorporation into projection
models for fish and shellfish, and (v) evaluation of the mean, variance, and trend in fish and shellfish production under a changing
ecosystem. This framework was applied to forecast summer sea surface temperature in the Bering Sea from 2001 to 2050. The mean
summer surface temperature was predicted to increase by 28C by 2050. The forecasting framework was also used to estimate the
effects of climate change on production of northern rock sole (Lepidopsetta polyxystra) through projected changes in cross-shelf trans-
port of larvae in the Bering Sea. Results suggest that climate change will lead to a modest increase in the production of strong year
classes of northern rock sole.
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Introduction
The recent report of the Intergovernmental Panel on Climate
Change (IPCC) concludes that “There is very high confidence
that the global average net effect of human activities since 1750
has been one of warming” (http://www.ipcc.ch/graphics/
gr-ar4-wg1.htm; IPCC, 2007). These changes in climate, in
concert with associated environmental disturbances and other
drivers, are expected to have lasting effects on the properties of
marine ecosystems and the goods and services extracted from
them. With a few exceptions, the IPCC AR4 assessment provides
qualitative rather than quantitative predictions of effects on
marine resources (Fischlin et al., 2007). The report identifies
several sources of uncertainty that contributed to the reliance on
qualitative statements, including inadequate representation of
the interactive coupling between ecosystems and the climate
system, such as limitations of climate envelope models used to
project responses of individual species to climate change, inter-
actions between climate change, and changes in human use and

management of ecosystems. Since the publication of the report,
analysts have endeavoured to evaluate the climate–ecosystem

couplings (Di Lorenzo et al., 2008) and new techniques for select-
ing climate scenarios for use in projections (Overland and Wang,

2007; Wang et al., in press). This paper presents a framework to
use these new results to make quantitative forecasts of climate-

change effects on fish and shellfish that can be used as part of a
coordinated global effort to assess these effects on commercial

fish and their fisheries throughout the world’s oceans.
Since the publication of the IPCC AR4 report, scientists around

the world have formed interdisciplinary research teams to improve
our understanding of the linkages between climate forcing on

marine ecosystems and the response of marine fish and shellfish
(Brander, 2008; Hollowed et al., 2008; ICES, 2008). These

groups are exploring techniques for quantifying the effects of
climate change on the reproductive success, growth, and distri-
bution of marine fish and shellfish. ICES and PICES sought

to facilitate these global research efforts by forming a joint
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ICES/PICES Working Group that would promote the development
of quantitative forecasts of climate effects on fish and shellfish in
the world’s oceans (http://www.ices.dk/workinggroups/View
WorkingGroup.aspx?ID=331).

Three modelling approaches are typically applied to evaluate
the effects of climate change on fish and shellfish resources.

(i) Statistical downscaling: regional scenarios are estimated from
IPCC model projections and are used to forecast time-series
of regional environmental variables (e.g. monthly tempera-
ture, advection, prey availability, predator abundance, and
habitat volume) that are incorporated into stock projection
models to estimate future fish or shellfish production.

(ii) Dynamic downscaling on regional scales: IPCC model
output is coupled to regional ocean models to project
changes in nutrients, phytoplankton, zooplankton, and
higher trophic level responses and feedbacks.

(iii) Dynamic global models: fully coupled biophysical models at
the global scale that operate at time and space scales relevant
to coastal domains.

It is likely that all three modelling approaches will draw on
information derived from correlative, mechanistic, and analogue
studies (Fischlin et al., 2007). Extensions of these modelling
approaches could include simulations to evaluate the performance
of different management strategies under changing ocean con-
ditions (A’mar et al., 2009).

There are trade-offs between all three modelling approaches.
From a physical perspective, statistical downscaling requires that
each of the local environmental variables can be linked to the
climate or regional forcing that can be projected by the IPCC
global climate models (GCMs). Often, the functional relationships
between the local environmental conditions and the climate or
regional forcing have not been determined or they are uncertain.
From a biological perspective, developing forecasts based on
environmental variables may not perform well, because the
responses of fish and shellfish to changes in environmental con-
ditions are represented by simplified interactions that may miss
non-linear responses or feedbacks within the system (Hsieh et al.,
2005; Steele, in press). However, complex biophysical models may
suffer from a lack of information on key parameters and a high like-
lihood of model misspecification. The trade-offs between modelling
approaches, and the knowledge that the results will be used to form
high stakes management decisions, suggest that multiple modelling
approaches should be considered and skill assessments should be
regularly performed to inform the public on the inherent uncertain-
ties associated with the projections (Stow et al., 2009).

We recognize that reliable biological projections necessitate
getting the climate forcing correct. In this regard, current
models have demonstrated the ability to simulate the past few
decades of the mean climate reasonably well (Reichler and Kim,
2008), and presumably, this applies to their 21st century forecasts
as well. Owing to the chaotic nature of the climate system, it is
impossible to forecast the timing and phases of future oscillations
in the climate system. Although specific forecasts are therefore not
feasible, the models do appear suitable to explore the probable
changes in the overall properties of the climate forcing.

The global need for baseline quantitative information on
potential climate-change effects on fish and shellfish warrants
a two-pronged approach. Rapid progress can be made using

statistical downscaling where environmental variables are pro-
jected and incorporated into existing stock projection models
using existing knowledge of mechanisms linking fish and shellfish
response to biophysical forcing. Time-series generated for this
effort can be used in retrospective analyses to evaluate the per-
formance of models and validation of hypothesized functional
relationships. In parallel, the longer term, and more costly, effort
involved in developing sufficient understanding to implement
dynamic downscaling by developing coupled biophysical models
should be commenced as a means of addressing complex feed-
backs in marine ecosystems. This paper describes a framework
for making the first type of forecast.

Methods
The proposed statistical framework involves the following steps:

(i) identification of mechanisms that explain environmental
influences on the reproductive success, growth, and/or dis-
tribution of major fish and shellfish populations;

(ii) identification of the key environmental variables needed to
model fish and shellfish responses to environmental
variability;

(iii) assessment of the feasibility of using IPCC model-simulation
results to predict environmental variables;

(iv) comparison of IPCC model hindcasts with observed 20th
century conditions on a regional basis, to select and weigh
the IPCC model scenarios, to develop an ensemble for use
in projections;

(v) estimation of environmental variables using the ensemble
projection and incorporation of time-series of environmental
variables into stock projection model(s) for fish and shellfish;

(vi) evaluation of the effects of harvest strategy under changing
ecosystem conditions.

Methods for selecting environmental variables
In most regions, fisheries oceanographers have conducted retro-
spective and process studies designed to improve our understand-
ing of the processes linking ecosystem forcing to reproductive
success, growth, and distribution of commercial species (for
recent examples, see papers included in symposium volumes
described by Daan and Fogarty, 2000; Fogarty, 2001; Royer
and Dagg, 2002; and Batchelder et al., 2005). These fisheries-
oceanography programmes provide a basis for selection of
environmental variables to use in predicting climate-change
effects on commercial fish and fisheries.

Once the environmental variables have been identified, fisheries
oceanographers and climate scientists should meet to explore the
feasibility of extracting variables from IPCC model projections.
This step often requires an exploration of techniques to connect
the climate forcing to the environmental factors at the spatial
and temporal scales relevant to fish and fisheries. The newly
formed ICES/PICES Working Group on Forecasting Climate
Change Impacts on Fish and Shellfish facilitates this type of com-
munication and scientific exchange.

Methods for projecting environmental variables
There is a variety of ways to formulate future climate scenarios
based on the results of IPCC models (Tebaldi et al., 2005).
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In general, it is prudent to consider the output from multiple
models because of the uncertainties inherent in any individual
climate projection. These uncertainties arise because the models
are imperfect and because of the intrinsic variability of the
climate system. In other words, from a single simulation, it can
be very difficult to separate a meaningful signal from the climate
“noise” that exists over a vast range of time-scales. One approach
is to apply a quasi-Bayesian method to construct weighted ensem-
ble mean projections of regional environmental conditions. This
method is based on the understanding that different models
have different strengths and weaknesses, and that the better
models for a particular parameter in a particular region should
be given greater consideration. Our procedure represents an adap-
tation of the method developed by Raftery et al. (2005) for com-
bining the results from numerical weather-prediction models for
short-term weather forecasts, and is outlined below.

The various IPCC model outputs are evaluated and rated, based
on the fidelity of their hindcasts for the latter half of the 20th
century, in terms of replicating observed conditions. The errors
in these hindcasts are computed for individual parameters and
for specific regions. Multiple criteria are considered for each par-
ameter, including replication of the means, as well as modelled vs.
observed variances and potentially additional measures, such as
trends and seasonality. The errors are then used to construct “dis-
tances” between the model and observations for each model simu-
lation. The distances form the basis for assigning weights for each
model using the following expression W i = exp(–Di/Dm), where
Wi is the weight for the individual model run i, Di the individual
model distance error, and Dm the mean of the model error dis-
tances. The ensemble weighted mean projections are then given
by FensðtÞ ¼

Pn
i¼1 Wi � Fi, where Fi(t) are the bias-corrected

model projections at time t. The weights, Wi, are also used to
compute the variance/uncertainty in the model projections incor-
porating both intermodel and intramodel forecast variability. As
pointed out by Raftery et al. (2005) among others, the Bayesian
approach has many optimal properties from a statistical
perspective.

An example of the selection method
We provide an example of the technique described above using
summer sea surface temperature (SST) over the Bering Sea shelf
as the parameter of interest. This parameter represents an import-
ant aspect of the oceanography, and is associated not just with the
suitability of the habitat for temperature-sensitive species, but is
also related to the stratification, and hence the vertical mixing of
nutrients into the euphotic zone and ultimately primary pro-
duction (Hunt et al., 2002).

Evaluation of the 20th century model hindcasts was carried out
for the region extending from 558N to 658N and 1658W to 1758W
for the average SST for July–September. This evaluation was
restricted to the subset of models found to replicate the essential
character of the Pacific Decadal Oscillation (PDO; Mantua et al.,
1997). The PDO represents the leading mode of variability in
SST in the North Pacific, and can be considered an “acid test” of
a model’s ability to account for the atmospheric variability,
oceanic circulation, and air–sea coupling in the North Pacific.
The models that passed the PDO test (Overland and Wang,
2007) were evaluated with respect to their simulations of the
mean, interannual variance, and average trend (1948–2007) in
seasonally averaged SST over the shelf (Figure 1). The validating

dataset was obtained from the NCEP Reanalysis (Kistler et al.,
2001).

The weights applied to the models, based on the accuracy of
their hindcasts in terms of reproducing the mean, variance, and
trend in the observed SST of the Bering Sea shelf over the last
half of the 20th century, described above, are illustrated in
Figure 2 (The normalized errors that these weights are based on
range from about 0.5 to 10.). The highest and second-highest
rated models were the high-resolution Canadian model
(CCCMAT-63) and the medium-resolution Japanese model
(MIROC-med), respectively. The two lowest rankings were the
two US Geophysical Fluid Dynamics Laboratory (GFDL)
models, GFDL2.0 and GFDL2.1. The latter models included
sizable errors in their hindcasts of both the mean and the trend
in SST (they indicated substantial cooling over the latter half of
the 20th century). It seems reasonable that the contributions of
these two models to the ensemble mean, even with bias-correction,
received little weight.

A time-series of SST for the first half of the 21st century, based
on an ensemble-weighted mean, is displayed in Figure 3. This pro-
jection was based on the model simulations incorporating the
middle-of-the-road A1B emission scenario. The results of the
IPCC simulations vary little with the assumed emission scenario
for the first half of the 21st century. Much more dramatic differ-
ences among the various scenarios are simulated for the second
half of the 21st century, which represents another source of uncer-
tainty. The ensemble results for the late summer SST on the Bering
Sea shelf featured a near constant warming trend of �0.48C per
decade. Note that the ensemble mean effectively averaged out
most of the year-to-year variability that exists in the individual
model simulations. The Bayesian method indicated an expected
standard deviation of �18C (as illustrated by the vertical bars in
Figure 3) about the ensemble mean in any particular year, with
a small increase over time in this uncertainty over the 2000–
2050 period of consideration.

Methods for projecting fish and shellfish responses
There are several published methods for incorporating environ-
mental forcing into population dynamics equations (Peterman
et al., 2000; Maunder and Watters, 2003; Arregui et al., 2006).
Three categories of models hold particular promise for use in
projecting climate-change effects on fish and shellfish recruit-
ment. Category 1 models project recruitment (R) by modifying
average recruitment ( �R) by an environmental variable [I;
Equation (1)], where n is the number of variables and their
associated constants (ai). In this case, the environmental variable
(s) would be drawn from the projected ensemble from IPCC
models output derived using the weighting method described
above:

Ryþ1 ¼ R1exp
Xn

i¼1

aiIi;y

 !
exp ð1y � s2

R=2Þ

 !
;

1y � Nð0;s2
RÞ:

ð1Þ

The error term 1y allows the user to project the expected range
of variability in recruitment by simulating 50-year recruitment
scenarios with random draws from a distribution of expected
recruitment. The potential range of process error associated with
the selection of climate-change scenarios can be incorporated by
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projecting recruitment using different climate-change scenarios
and weighting the mean recruitment projections by the weights
provided by the retrospective assessment of the performance of
the climate models described above. Density-dependent processes
are not considered in Category 1 models.

Category 2 models modify the spawner–recruitment relation-
ship with incorporated environmental variables (I) and random
variability 1y (Hilborn and Walters, 1992). For example, a

Ricker-type spawner–recruitment model could be constructed as
follows:

Rt ¼ a � St � e �ðbS þ a1I1;t þ a2I2;t þ ...Þ e ð1y � s2
R=2Þ

� �
:

This approach has been used in several retrospective studies
designed to assess the performance of models with and without

Figure 1. Fit of 12 of 22 IPCC models to the first principal component (Empirical Orthogonal Function; EOF1) of SST in the North Pacific,
adapted from Wang et al. (in press).
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environmental forcing (Peterman et al., 2000; Wilderbuer et al.,
2002). The expected range of variability in recruitment resulting
from climate forcing could be simulated by incorporating environ-
mental variables derived from an ensemble of IPCC model outputs
derived from the weighting method described above.

Category 3 models utilize spawner–recruitment functions that
incorporate processes at multiple life stages. Some species exhibit
dynamic and complex processes because of multiple bottlenecks
occurring over several life stages (Rothschild, 2000). Phase tran-
sitions in the spawner–recruitment relationship may result from
time-lags in the recruitment response of predators and prey
(Bailey, 2000). Brooks and Powers (2007) proposed a generalized
method for modelling the spawner–recruitment relationship
when key governing factors are exhibited over several life stages.
This modelling approach tracks stage-specific processes and
accounts for density-dependent effects on the predation rate.
Alternatively, predation effects could be modelled explicitly
using a multispecies modelling approach (Jurado-Molina et al.,
2005). In Category 3 models, time-series of environmental vari-
ables would be derived from ensembles of IPCC model output
for different life stages (seasons).

Some ecosystems may exhibit threshold responses (regime
shifts) to changing climate conditions (Anderson and Piatt,
1999; Beaugrand et al., 2003; Chavez et al., 2003; Peterson and
Schwing, 2003; Scheffer and Carpenter, 2003; Hsieh et al., 2005).
Threshold responses (regime shifts) to abrupt shifts in climate
may reflect changes in the carrying capacity of the ecosystem.
Category 1 models would address shifts in the carrying capacity
by partitioning the retrospective time-series into regimes and esti-
mating �R and sR

2 for the different regimes. Shifts in the carrying
capacity would be addressed in Category 2 and 3 models by incor-
porating indicators of prey abundance and habitat volume directly
into the spawner–recruitment relationship.

The framework presented here could be modified to assess the
implications of climate change on spatial distributions related to
range extensions or contractions (Mueter and Litzow, 2008).
Shifts in the range or migration patterns of marine fish or shellfish
could be incorporated indirectly by including indicators that rep-
resent the volume of suitable habitat (Jacobson et al., 2005;
Pelletier and Mahévas, 2005; Agostini et al., 2006).

Stock assessment scientists typically project the stock forward
to assess the near-term consequences of different harvest strategies
(see Punt, 2003; Goodyear, 2004, 2005; Methot, 2005; Schnute
et al., 2007, and http://nft.nefsc.noaa.gov/index.html). For
Category 2 and 3 models, analysts have the option of estimating
parameters for the spawner–recruitment relationship within a
stock assessment or outside the stock assessment (Haltuch, 2008;
Schirripa et al., 2009). Simulation testing and short-term forecast-
ing is recommended to assess the skill of the model relative to
observed responses of fish and shellfish. These tests will provide
a measure of the uncertainty associated with the model
(Schirripa et al., 2009). Such tests could be incorporated into
the periodic stock assessment cycle. Such an approach will allow
analysts to adjust the model to incorporate new information.

Management considerations
Projections of the distribution, abundance, and growth of fish and
shellfish populations should include scenarios regarding the
expected trends in anthropogenic effects (Easterling et al., 2007).
Time-trends in the world markets for fish and shellfish are likely
to influence the local demand for seafood (Pinnegar et al.,
2006). Collaborations with economists and social scientists will
be required to develop scenarios for the cost of shipping, food pre-
ferences, and new technological innovations for storage and
product development. Collaborations with resource managers
will be required to develop scenarios for future harvest manage-
ment practices (A’mar et al., 2009). Scenarios for time-trends in
habitat enhancement (e.g. artificial reefs) and stock enhancement
(marine ranching) will also be required to forecast the production,
distribution, and growth of marine fish and shellfish populations
throughout the world adequately.

An application for northern rock sole
Northern rock sole (Lepidopsetta polyxystra) is an important flat-
fish species in the North Pacific Ocean and it has a large
biomass in the eastern Bering Sea. The species supports a substan-
tial fishery in the Bering Sea; it is also harvested in the Gulf of
Alaska. Temporal trends in northern rock sole production have
been found consistent with the hypothesis that decadal scale (or
shorter) climate variability influences survival during the early life-
history period (Wilderbuer et al., 2002). After spawning in
February–March, northern rock sole larvae are subject to

Figure 2. Weights for various models used in forming ensemble
mean using a Bayesian model averaging approach. The criteria used
for evaluating the models were the accuracy of their hindcasts in
terms of reproducing the mean, variance, and trend in the observed
SST of the Bering Sea shelf over the last half of the 20th century.

Figure 3. Weighted ensemble mean of IPCC forecasts of SST under
A1B emissions scenario. The vertical lines for selected years extend
from the mean 2 1 s.d. to the mea n + 1 s.d., based on combining
the intermodel and intramodel variance in the individual projections.
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advection by wind, currents, and tidal forcing during April–June.
Using an ocean surface current model (Ingraham and Miyahara,
1988), Wilderbuer et al. (2002) found that wind-driven advection
of larvae towards favourable nursery areas in the inner domain
coincided with above-average recruitment. The inner domain of
the Bering Sea is a productive region because of tidal mixing
(Coachman, 1986; McRoy et al., 1986). Ocean forcing resulting
from on-shelf (easterly) winds during the 1980s, and again in
2001–2003, coincided with periods of above-average recruitment,
whereas off-shelf (westerly) or mid-shelf (northerly) winds during
the 1990s corresponded to periods of poor or average recruitment
(Figure 4). This suggests that patterns of future recruitment for
northern rock sole would depend on wind patterns that are influ-
enced by future climate conditions. Therefore, to predict future
recruitment for northern rock sole, it is also necessary to predict
future climate conditions.

Following the framework for projecting environmental vari-
ables outlined above, spring wind, and the associated advection
on the Bering Sea shelf, was estimated from a weighted ensemble
of IPCC model output. Again, the various IPCC models used
were rated based on how well their hindcasts for the latter half
of the 20th century matched observations. The two specific criteria
for this rating were the IPCC model’s ability to reproduce the
overall mean April–June winds on the southeast Bering Sea
shelf, and the interannual variance in the seasonal mean winds.
In general, the models were able to hindcast the winds more accu-
rately than the SST. The normalized errors in the modelled mean
and variance in the winds ranged from �0.1 to 2. In addition, a
different ranking emerged for the climate models for the cross-
shelf wind index (Figure 5) than for the late summer SST
example presented earlier (Figure 2). Although the MIROC-med
and MRI models ranked high for both parameters, the ECHO-G
ranked low for both. Other models, such as the CCCMA_t63
and GFDL2.1, were decidedly better for one parameter than for
the other. The weights for each model with respect to the cross-
shelf winds were then used to form a projection of the winds

out to 2050 and converted to ending longitude of surface-drifting
larvae. These projections, with the attendant year-to-year variabil-
ity provided by the Bayesian scheme, indicated a slight tendency
towards increased shoreward transports, with substantial variabil-
ity on top of this weak trend (Figure 6).

Based on these results from the IPCC climate models, the
future production of northern rock sole was projected for the
period 2001–2050 using a method similar to the Category 1
recruitment function. A hierarchical bootstrap algorithm was
applied to estimate annual variability in future spring climate
(i.e. wind direction and subsequent larval drift), as well as variabil-
ity in recruitment under a given climate condition. First, three
climate conditions (corresponding to the three production
regimes identified by Wilderbuer et al., 2002) were characterized
according to the range of the ending longitude (L) expected for
larval drift under each condition: (i) on-shelf drift (L , 1658W),

Figure 4. “Observed” recruitment of northern rock sole (estimated from a statistical age-structured model used in the 2007 annual stock
assessment). Bar colours reflect classification according to spring climate condition: on-shelf wind drift (lightest shading), off-shelf wind drift
(darkest shading), and mid-shelf wind drift (intermediate shading).

Figure 5. Weights for various models used in forming ensemble
mean using a Bayesian model averaging approach. The criteria used
for evaluating the models were the accuracy of their hindcasts in
terms of reproducing the mean, variance, and trend in the observed
wind of the Bering Sea shelf over the last half of the 20th century.
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(ii) mid-shelf drift (1658W , L � 1688W), and (iii) off-shelf drift
(1688W � L). Then, for each projected year, the corresponding
predicted mean drift-ending longitude and variance from the
IPCC model results were used (Figure 6) to draw a sample
ending drift longitude from a normally distributed population.
Next, the climate condition corresponding to the sample longitude
was identified, based on the limits presented in Figure 6. Finally, a
value for recruitment was randomly selected (with replacement)
from the set of “observed” recruitments (Figure 4) corresponding
to the given climate condition. This was repeated 20 000 times to
generate bootstrap realizations for each projected year. For each
year, the probability of occurrence for each climate condition
was computed (Figure 7), as well as the mean and distribution
of recruitment (Figure 8).

Not surprisingly, the temporal trend in probability of occur-
rence of each climate scenario followed a pattern similar to that
of the mean ending longitude of larval drift. These results
suggest a moderate increase in expected recruitment over time,
because the trend indicated more frequent occurrence of the
on-shelf climate condition (A in Figure 7) over time, which corre-
sponds to the highest expected mean recruitment. However,
Figure 7 does not incorporate the variation in recruitment,
which is displayed in Figure 8.

Once the variation of recruitment within a climate condition
was incorporated, any trend towards larger recruitments over
time was much reduced (Figure 8). The mean of expected recruit-
ment displayed a comparatively smaller trend towards larger
values over time, whereas the median displayed no trend whatso-
ever. The reduction in trend from mean to median happened
because of the asymmetrical nature of the distribution of recruit-
ment under each of the three climate conditions. As such, the
model suggests that, to the best of our current knowledge, rock
sole production will not be substantially affected by future
climate change—at least concerning the effects of that change on
patterns of spring larval advection.

Discussion
A framework for forecasting the implications of climate change on
production of marine fish that incorporates estimates of key
environmental variables derived from IPCC GCM outputs in
stock projection models is presented. The wide range of possible

outcomes from the AR4 models presents a challenge. To deal
with possible systematic errors in these models and the uncertainty
in their simulations in general, a method was developed for
weighting individual model forecasts. This method yields esti-
mates of means and variances in environmental variables projected
into the future on the time- and space-scales relevant to fish and
shellfish populations. The framework also utilizes known linkages
between environmental variability and fish and shellfish pro-
duction. Statistical-projection methods allow scientists to simulate
the likely effects of climate change on fish and shellfish, incorpor-
ating the uncertainty associated with climate projections and
process error in the projection model. Stock projection models
are utilized to project the expected value and its associated
uncertainty.

There is considerable debate about the best practices for down-
scaling IPCC model output for use in projecting the effects of
climate change on marine ecosystems (ICES, 2008). Comparison
of the model weights for summer SST and spring winds illustrates
that IPCC GCMs have different strengths and weaknesses for

Figure 6. Predicted mean and standard deviation of the longitudinal endpoint of projected larval drift from spring winds for 2001–2050.
Background plot shading reflects classification of projected endpoints according to spring climate condition: on-shelf wind drift (lightest
shading), off-shelf wind drift (darkest shading), and mid-shelf wind drift (intermediate shading).

Figure 7. Cumulative probability of future spring climate conditions
(A, B, and C) based on 20 000 bootstrapped samples year21 (A,
onshore winds; B, mid-shelf winds; C, offshore winds).
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projections for the Bering Sea. The Bayesian weighting technique
suggested herein is designed to limit the use of unrealistic and
improbable climate trajectories. The use of a pre-simulation skill
assessment should also reduce uncertainty that arises from struc-
tural incompleteness in the models (ICES, 2008). Importantly, it
allows for the estimation of error bounds and for quantifying
levels of confidence.

Future work could evaluate results using alternative selection
processes and weighting schemes. For example, Tebaldi and
Bruno (2009) present an alternative Bayesian-modelling approach
to estimate uncertainty in ensembles of climate models. In some
cases, the environmental variable needed for projection may not
be readily available from IPCC model output. When this occurs,
analysts will have to determine the empirical relationships
linking climate forcing to regional biologically relevant variables,
as well as the associated uncertainty. These relationships could
be used to improve the estimates of time-series of environmental
variables derived from ensembles of IPCC climate-model output
and will provide a measure of the associated uncertainty in the
projections resulting from downscaling.

We acknowledge that some doubts remain about the credibility
of the GCMs being used for climate projections. For example,
Koutsoyiannis et al. (2008) compared the 20th century hindcasts
from a variety of models with observations and found a mismatch
on decadal time-scales. We contend that this was not a valid test of
the models, because of the chaotic nature of the climate system.
The lack of predictability for specific events (e.g. relatively warm
or cool conditions for a particular region and time interval)
does not imply that the models cannot be used to anticipate
overall changes in the properties of the climate from a stochastic
perspective.

As for stock assessment models, the approach described here is
a simplification of the complex processes controlling population
responses to climate drivers. The predictive skill of climate
models is uncertain and this uncertainty is likely to grow over
time, making simulations at the end of the time-series less reliable
(Smith et al., 2007). When coupled with the possibility of

behavioural, genetic, or other forms of adaptation, uncertainty
is further increased. However, Levin et al. (1997) recommended
that mechanistic models should be developed that begin with
what is understood (or hypothesized) about the interactions of
individual units, with a goal to identify emergent behaviour
that can be expressed as statistical ensembles. The framework pre-
sented in this paper encourages scientists to build on the long
history of fisheries oceanographic research available in many of
the world’s large marine ecosystems to formulate scenarios for
potential effects of climate change on marine fish and their
fisheries.

The framework relies on existing knowledge of linkages
between environmental forcing and fish production, and these lin-
kages may be unreliable. The effects of short-, medium-, and long-
term environmental influences on fish stocks are complex and
uncertain for most species, and predictions of stock status are
dependent upon accurate forecasts of the appropriate environ-
mental indices and the stability of the relationships between
climate and the stock (Fréon et al., 2005). There are many
examples where proposed relationships between fish or shellfish
recruitment and climate have not held up over time (Myers,
1998; Bull and Livingston, 2001; De Oliveira and Butterworth.
2005; Francis et al., 2006). The imprecision inherent in the projec-
tions of climate–recruitment relationships can be attributed to: (i)
misspecification of or changes over time in the links between
climate and recruitment; (ii) error and uncertainty in estimating
the characteristics of the links based on historical data; and (iii)
error and uncertainty in the forecasts of the climate indices.
Francis (2006) suggests that cross-validating the environmental
variables included as influences on stock dynamics may assist in
determining more reliable relationships between recruitment and
climate. Relationships may also fail when ecosystem linkages
have non-linear underpinnings (Scheffer and Carpenter, 2003).
To address this issue, time-series could be analysed to assess the
dimensionality of the system at different time-scales (Sugihara
and May, 1990; Sugihara, 1994; Hsieh et al., 2005).

The framework for projecting climate-change effects on fish
and shellfish presented here was intentionally designed to parallel
the modelling approach used for stock assessment. The expec-
tation is that the parameters and functional forms assumed for
stock assessment will be regularly evaluated as part of the public
review of stock assessments and the active peer review of fisheries
oceanographic research. As understanding of the functional
relationships between environment and fish production evolves,
this information can be rapidly updated in the climate-change
projections. As part of the periodic reviews, skill assessments
could become an integral aspect of the proposed framework to
update models continually as new information is acquired (Stow
et al., 2009).

There are alternative modelling approaches that could be con-
sidered for forecasting climate-change effects on commercial
species. As mentioned in the Introduction, it is also possible to
conduct experiments involving integrated dynamical models. For
example, Rose et al. (2006) coupled a regional ocean circulation
model with a nutrient–phytoplankton–zooplankton component
to an individual-based model with bioenergetic models to
explore the implication of changes in ocean forcing on fish
growth. This type of model could be modified to investigate the
effects of climate change by treating the IPCC model output as
boundary and initial conditions for a regional ocean model.
Numerical “experiments” could be performed with the biophysical

Figure 8. Projected mean (black line) and quantiles (coloured
shading) for northern rock sole productivity (recruitment) by year.
Quantiles are colour-coded symmetrically from the median (bright
red) to 0 or 100% (dark blue).
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model under different climate scenarios to develop the environ-
mental variables for use in stock projection models (e.g.
Category 2 model) or outputs could be drawn from trophically
linked spatial models. Levin et al. (1997) suggested that this class
of model system should be used when the added amount of
detail can be supported by observations that can be measured.
The detailed information needed for validation and parameteriza-
tion of dynamic models is difficult and expensive to collect, as
illustrated by the ambitious effort underway in the Bering Sea
under the auspices of the Bering Sea Integrated Research
Program (BSIERP)-Bering Sea Ecosystem Study (BEST) pro-
gramme (http://bsierp.nprb.org).

The forecasting framework was applied for the Bering Sea
region to demonstrate the method for selecting IPCC model
output and developing a weighted ensemble for an environmental
variable of interest (July–September SST). This method revealed
that the CCCMAT-63 and the MIROC-M models produced the
most accurate estimates of mean, variance, and trends in Bering
Sea SST for the last half of the 20th century. The weighted ensem-
ble demonstrated that mean SSTs are expected to increase by 28C
by 2050. This implies that a typical summer in 2050 will be as
warm as the warmest summers of the present day (Overland and
Stabeno, 2004). These changes are likely to affect the spatial distri-
bution of many fish and shellfish populations in the region
(Mueter and Litzow, 2008) and could affect the seasonal pro-
duction cycle (Hunt et al., 2002).

The effect of climate change on Bering Sea northern rock sole
production provides an example of the Category 1 forecast.
Specifically, the model incorporated uncertainty at the level of
both future climate change and the biological response to that
climate. The results suggested that qualitative forecasts of the
effect of climate on fish and shellfish based singly on IPCC
model scenarios (Figure 7) could overestimate the biological
response (Figure 8). Incorporating the distribution of recruit-
ments under different climate regimes into the forecast contribu-
ted to the perception of the climate effect.

Several assumptions were necessary to complete the example
forecast. For simplicity, recruitment was assumed independent
of stock size. This allowed bootstrapping over recruitments
within a climate scenario, rather than using deviations from a
climate-specific stock–recruitment relationship. As such, projec-
tions of future stock size were not needed. A more sophisticated
model, which incorporates climate-mediated changes in density-
dependence, would be an example of a Category 2 model. Such
a model might incorporate additional realism by including serial
autocorrelation in recruitment through its dependence on stock
size, but at the expense of added complexity associated with pro-
jecting stock size from one year to the next.

The example model incorporated only the effect of projected
changes in cross-shelf transport on recruitment of northern rock
sole. Changes in SST are not expected to change the tidal mixing
that occurs in the inner domain, which creates a nutrient-rich
nursery area for northern rock sole. Furthermore, retrospective
studies established that SST was not significantly related to recruit-
ment (Wilderbuer et al., 2002). We therefore expect that changes
in SST will not have a strong effect on recruitment of northern
rock sole and that cross-shelf transport will continue to be the
most influential environmental variable influencing it.

The northern rock sole example forecast recruitment based on
our current understanding of the linkages between climate and
recruitment. Other processes (e.g. prey availability, growth, and

predation rates) could be influenced by increases in SST. For
northern rock sole, retrospective studies did not provide evidence
that recruitment was significantly influenced by warm surface
temperature. If evidence becomes available, these temperature
effects on processes could be addressed using a Category 2 or 3
model that tracks, for example, the effect of temperature on the
dynamics of growth through the population. However, because
the functional form and parameter values for this temperature
dependence are unknown for northern rock sole, developing a
model that incorporates SST would be purely hypothetical. Until
the requisite field and laboratory experiments necessary to eluci-
date linkages are undertaken, incorporating temperature effects
would remain an academic endeavour. Expanded field and labora-
tory studies are needed to evaluate the potential response of fish to
projected environmental conditions.

Stochastic simulations allow for a comparison of the mean and
median estimates of recruitment over time. In the next 10–20
years, interannual and decadal scale variability is likely to domi-
nate trends in cross-shelf transport of northern rock sole larvae.
Recruitment of this species is likely to continue to vary. After
2025, mean recruitment is expected to trend upwards at a
modest rate, whereas the median recruitment is expected to
remain stable. The reduction in trend from mean to median
stems from the asymmetrical nature of the distribution of recruit-
ment under each of the three climate conditions.

The examples presented here address the uncertainty resulting
from model selection, environmental process error, measurement
error in the assessment, and process error in the spawner–recruit-
ment relationship. In our analysis, process error in the spawner–
recruitment relationship was incorporated using a bootstrap
method. An alternative approach would be to estimate the prob-
ability distributions for parameters used in the relationship
between the environment and recruitment, to provide an estimate
of the parameter uncertainty as an addition to the process and
observation error already inherent within the framework.

If interdisciplinary research teams around the world use this or
a similar framework to assess climate-change effects on marine fish
and shellfish, comparative studies can be used to evaluate hypoth-
esized relationships. Myers (1998) advocated this approach,
suggesting that hypothesized relationships could be verified and
validated with separate tests and analyses, using meta-analyses
across ecosystems, geographical areas, and/or species to explore
other links between climate and recruitment. If regional modelling
teams apply the framework and meet to compare results, we
anticipate that a more comprehensive assessment of climate-
change effects on the availability of fish and shellfish resources
throughout the world will be available for consideration by
future IPCC review panels.
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